Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Biosaf Health ; 4(3): 179-185, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1872950

ABSTRACT

Like antibody evaluation, using an effective antigen-specific T-cell immunity assessment method in coronavirus disease 2019 (COVID-19) patients, survivors and vaccinees is crucial for understanding the immune persistence, prognosis assessment, and vaccine development for COVID-19. This study evaluated an empirically adjusted enzyme-linked immunospot assay for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell immunity in 175 peripheral blood samples from COVID-19 convalescents and healthy individuals. Results of viral nucleic acid were used as the gold standard of infection confirmation. The SARS-CoV-2M peptide pool had higher sensitivity of 85% and specificity of 71% for the single peptide pool. For combined peptide pools, the parallel evaluation (at least one of the peptide pools is positive) of total peptide pools (S1&S2&M&N) had higher sensitivity (up to 93%), and the serial evaluation (all peptide pools are positive) of total peptide pools had higher specificity (up to 100%). The result of the serial evaluation was better than that of the parallel evaluation as a whole. The detection efficiency of M and N peptide pool serial evaluation appeared the highest, with a sensitivity of 80% and specificity of 93%. This T-cell immunity detection assay introduced in this report can achieve high operability and applicability. Therefore, it can be an effective SARS-CoV-2-specific cellular immune function evaluation method.

3.
Nat Commun ; 13(1): 1687, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1768823

ABSTRACT

Rapid and sensitive diagnostics of infectious diseases is an urgent and unmet need as evidenced by the COVID-19 pandemic. Here, we report a strategy, based on DIgitAl plasMONic nanobubble Detection (DIAMOND), to address this need. Plasmonic nanobubbles are transient vapor bubbles generated by laser heating of plasmonic nanoparticles (NPs) and allow single-NP detection. Using gold NPs as labels and an optofluidic setup, we demonstrate that DIAMOND achieves compartment-free digital counting and works on homogeneous immunoassays without separation and amplification steps. DIAMOND allows specific detection of respiratory syncytial virus spiked in nasal swab samples and achieves a detection limit of ~100 PFU/mL (equivalent to 1 RNA copy/µL), which is competitive with digital isothermal amplification for virus detection. Therefore, DIAMOND has the advantages including one-step and single-NP detection, direct sensing of intact viruses at room temperature, and no complex liquid handling, and is a platform technology for rapid and ultrasensitive diagnostics.


Subject(s)
COVID-19 , Pandemics , COVID-19/diagnosis , DNA Viruses , Gold , Humans , Lasers
4.
Small ; 18(12): e2107832, 2022 03.
Article in English | MEDLINE | ID: covidwho-1669645

ABSTRACT

The ability to detect pathogens specifically and sensitively is critical to combat infectious diseases outbreaks and pandemics. Colorimetric assays involving loop-mediated isothermal amplification (LAMP) provide simple readouts yet suffer from the intrinsic non-template amplification. Herein, a highly specific and sensitive assay relying on plasmonic sensing of LAMP amplicons via DNA hybridization, termed as plasmonic LAMP, is developed for the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) RNA detection. This work has two important advances. First, gold and silver (Au-Ag) alloy nanoshells are developed as plasmonic sensors that have 4-times stronger extinction in the visible wavelengths and give a 20-times lower detection limit for oligonucleotides over Au counterparts. Second, the integrated method allows cutting the complex LAMP amplicons into short repeats that are amendable for hybridization with oligonucleotide-functionalized Au-Ag nanoshells. In the SARS-CoV-2 RNA detection, plasmonic LAMP takes ≈75 min assay time, achieves a detection limit of 10 copies per reaction, and eliminates the contamination from non-template amplification. It also shows better detection specificity and sensitivity over commercially available LAMP kits due to the additional sequence identification. This work opens a new route for LAMP amplicon detection and provides a method for virus testing at its early representation.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Journal of Physics Communications ; 5(10), 2021.
Article in English | ProQuest Central | ID: covidwho-1462255

ABSTRACT

Since the COVID-19 pandemic began, two drugs, chloroquine (CQ) and hydroxychloroquine (HCQ), have received renewed attention. Using the density functional theory method in the CASTEP and DMol3 packages, we calculated both molecules’ infrared spectra and the partial phonon density of states of the hydroxyl group to identify the origin of the differences between the two spectra. Some characteristic vibrational modes of the hydroxyl group in HCQ were analysed individually. We also compared their Fukui functions and found that the oxygen atom in HCQ possesses electrophilic properties. This finding may be related to the large difference in toxicity between these two drugs. The method herein presents a new pathway to investigate organic molecules from the view of physics.

SELECTION OF CITATIONS
SEARCH DETAIL